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I. Public Datasets analyzed

Dataset Figure Accession Reference
Lymphoblastoid Hi-C | Supplemental GSE18199 Lieberman-Aiden, E. et al. Comprehensive
Figure 7 mapping of long-range interactions reveals
folding principles of the human genome.
Science 326, 289-93 (2009).”'
H3K4me3, Figures 1-4, Shen, Y. et al. A Map of cis-Regulatory
H3K4mel, H3K27ac, | Supplemental Sequences in the Mouse Genome. in
p300, CTCF, ChIP- | Figures 5,10,20- submission (2012).%
seq, mESC and 23
cortex RNA-seq
Lung Fibroblast 5C Supplemental Wang, K.C. et al. A long noncoding RNA
Figure 4 maintains active chromatin to coordinate
hc;rSneotic gene expression. Nature 472, 120-
4.
Medl, Med12, Smcl, | Supplemental GSE22557 Kagey, M.H. et al. Mediator and cohesin
Smc3, Figure 5, 20-22 connect gene expression and chromatin
architecture. Nature 467, 430-5.*
mESC 2D-FISH Figure 1, Eskeland, R. et al. Ring1B compacts
Supplemental chromatin structure and represses gene
Figure 6 expression independent of histone
ubiquitination. Mol Cell 38, 452-64.%
Cortex H3K9me3 Figure 2 GSE33722 Xie, W. et al. Base-resolution analysis of
sequence and parent-of-origin dependent
DNA methylation in the mouse genome. Cell
148 (4), 816-831.%
IMR90 H3K4me3, Figure 2, 4 SRP000941 Hawkins, R.D. et al. Distinct epigenomic
hESC H3K9me3, landscapes of pluripotent and lineage-
IMR90 H3K9me3 committed human cells. Cell Stem Cell 6,
479-91.”
mESC Lamina Figure 2, GSE17051 Peric-Hupkes, D. et al. Molecular maps of the
DAM-id Supplemental reorganization of genome-nuclear lamina
Figure interactions during differentiation. Mol Cell
38, 603-13.%°
mESC Replication Supplemental GSE18019 Hiratani, I. et al. Genome-wide dynamics of
Timing Figure 14, 16 replication timing revealed by in vitro models
of mouse embryogenesis. Genome Res 20,
155-69.%
H3K9me2 (LOCK) Supplemental GSE13445 Wen, B., Wu, H., Shinkai, Y., [rizarry, R.A.
Domain ChIP-Chip Figure 15 & Feinberg, A.P. Large histone H3 lysine 9
dimethylated chromatin blocks distinguish
differentiated from embryonic stem cells. Nat
Genet 41, 246-50 (2009).*
mESC H3K27me3, Supplemental GSE12241 Mikkelsen, T.S. et al. Genome-wide maps of
H4K20me3 Figure 20-22 chromatin state in pluripotent and lineage-

committed cells. Nature 448, 553-60
(2007)."!




mESC H3K36me3, Figure 4, GSE11724 Marson, A. et al. Connecting microRNA

H3K79me2, Oct4, Supplemental genes to the core transcriptional regulatory

Sox2, Nanog Figure 20-22 circuitry of embryonic stem cells. Cell 134,
521-33 (2008).*

mESC H3K9me3 Figure 2, 4 GSE18371 Bilodeau, S., Kagey, M.H., Frampton, G.M.,
Rahl, P.B. & Young, R.A. SetDBI1
contributes to repression of genes encoding
developmental regulators and maintenance of
ES cell state. Genes Dev 23, 2484-9 (2009).*

mESC Jarid2, Supplemental GSE18776 Peng, J.C. et al. Jarid2/Jumonji coordinates

Jaridla, Suz12, Ezh2 | Figure 20-22 control of PRC2 enzymatic activity and target
gene occupancy in pluripotent cells. Cell 139,
1290-302 (2009).*

mESC PollI Serine 5, | Supplemental GSE20530 Rahl, P.B. et al. c-Myc regulates

PollI Serine 2, NelfA, | Figure 20-22 transcriptional pause release. Cell 141, 432-

Ctr9, Spt5 459

DNase I HS Supplemental Schnetz, M.P. et al. CHD?7 targets active gene

Figure 20-22 enhancer elements to modulate ES cell-

specific gene expression. PLoS Genet 6,
e1001023.%

GRO-Seq Figure 4 GSE27037 Min, [.M. et al. Regulating RNA polymerase
pausing and transcription elongation in
embryonic stem cells. Genes Dev 25, 742-
54.4

bioGPS database Figure 4 Lattin, J.E. et al. Expression analysis of G

Protein-Coupled Receptors in mouse
macrophages. Immunome Res 4, 5 (2008).*

II. Supplemental Methods

Mapping

We mapped the data using BWA using default parameters. We consider only uniquely

mapping reads (mapping quality > 10). We remove PCR duplicate reads using Picard

(http://picard.sourceforge.net).

Interaction Matrices

The interaction matrices were calculated as previously described’' at bin sizes ranging

from 10kb to 1Mb.

Normalization

We normalized the Hi-C data as previously described by Yaffe and Tanay™.

However, we did not perform linear weight smoothing and BFGS non-linear optimization




and the normalization is still effective at removing restriction enzyme bias (see
Supplemental Figures 1 and 2).
Heat Maps and Visualization of Data

To visualize the high-resolution interaction data, we generated 2D heat-maps that
were overlaid with publicly available ChIP-Seq data sets visualized in a genome browser
(Figure 1a). Interaction frequencies were calculated as above. Interaction frequencies
between any two loci can be visualized by identifying the point off the axis where
diagonals originating from each locus intersect, in a manner similar to a linkage
disequilibrium plot.

The heat maps in Supplementary Figure 4 are made differently. This is to
correspond to the method used in (ref. 33) so we can accurately compare the interaction
frequencies between our Hi-C data and the published 5C data from Wang et al. The
interaction matrix is generated as follows. The 120kb HoxA locus is split into 30
segments using a 30kb sliding window with sliding in 3kb intervals. For each interaction
between two 30kb windows i and j, we identify all possible HindIII cut sites in i and j and
all possible HindlIII cut sites interactions between these bins i and j. The interaction score
between two segments of the heatmap is the mean frequency of interactions among all
possible HindlI cut site combinations between the two bins. The data for the Wang et al.

5C heatmaps was downloaded from the accompanying supplemental data™.

Estimate of Intermolecular Ligation Rates
We estimated the intermolecular ligation rate between any two loci in the genome

by analyzing the number of reads that map from a nuclear chromosome (chr(N)) to the



mitochondrial chromosome (chrM). As random intermolecular interactions will depend
on the concentration of molecules in solution, the number of random interactions between
the nuclear and mitochondrial chromosomes should be proportional to the amount of
nuclear and mitochondrial DNA in solution during the ligation step of the protocol. As
the number of mitochondria can vary between cell types, we use an estimated number of
mitochondria of 40 based on previous experiments in the literature to test the number of
mitochondria in mouse ES cells”’. The total amount of “interacting space” between the
mitochondrial genome and the nuclear genome is the product of the amount of
mitochondrial DNA in solution (roughly 16kb/mitochondria * 40 mitochondria/cell) and
the size of DNA in solution (roughly 5.1 Gigabases per diploid nucleus). By dividing the
total number of chrM to chr(N) reads by this “interacting space,” we can get an estimate
of the number of reads/kbp” for any interaction in the genome. Our estimate suggest that
for any two 40kb bins, there would be on average 0.015 reads per bin due to
intermolecular ligations in the mouse ES cell HindlIII original library and 0.079 reads
/40kb interaction in the mouse ES cell replicate library. This is detailed in Supplemental
Figure 27.

We would note that there are two potential pitfalls of this method. First, this
requires an estimate of the number of mitochondria in a given cell type, which may not
be available for any particular cell type of interest and can potentially vary by orders of
magnitude. A second potential pitfall is that for the Ncol restriction enzyme, there are no
mappable Ncol cut sites in the mitochondrial chromosome. Therefore, this method of
analysis is not amenable to all restriction enzymes that could be used in a Hi-C

experiment.



Correlation Between Experiments

We calculate the correlation between two experiments as follows: The set of all
possible interactions I; for two experiments 4 and B were correlated by comparing each
point in interaction matrix 14 from experiment 4 with the same point [z from experiment
B. Because the interaction matrix is highly skewed towards proximal interactions, we
restricted the correlation to a maximum distance between points i and j of 50 bins. We
use R to calculate the Pearson correlation between the two vectors of all point in I, and

I5.

Directionality Index, Domain and Boundary Calling

We noted that the regions at the periphery of the topological domains are highly
biased in their interaction frequencies. In other words, the most upstream portion of a
topological domain is highly biased towards interacting downstream, and the downstream
portion of a topological domain is highly biased towards interacting upstream. We
reasoned that by identifying such biases in interaction frequency in the genome, we
would be able to identify the locations of topological domains and boundaries in the
genome.

To determine the directional bias at any given bin in the genome, we developed a
Directionality Index (DI) to quantify the degree of upstream or downstream bias of a
given bin. The directionality index is calculated in equation 1, where A is the number of

reads that map from a given 40kb bin to the upstream 2Mb, B is the number of reads that



map from the same 40kb bin to the downstream 2Mb, and E, the expected number of

reads under the null hypothesis, is equal to (A + B)/2.

Eq. 1

B-A\[ (A-F)°  (B-E)
. (|B-A|)( E T E )

The directionality index is based on the chi-squared test statistic, where the null

hypothesis is that each bin is equally likely to interact with the regions upstream and
downstream of it. Bins that show a directional bias have a directionality index
proportional to the degree of bias, with more biased bins having a higher magnitude of
directionality index. We use a 40kb bin size and a 2Mb because these parameters
maximize the reproducibility of the DI and the domain calls while retaining a sufficiently
high resolution to identify domains and boundary regions.

To generate a random directionality index, we randomized the direction either
upstream or downstream of every read pair that mapped to a given bin and calculated the
directionality index with the randomized directions. Bins with large random
directionality indexes are virtually absent by chance, with less than 1% of the absolute
value of random DI being greater than 6.57.

We consider the directionality index as an observation and believe that the “true”
hidden directionality bias (DB) can be determined using a hidden Markov model (HMM).
The HMM assumes that the directionality index observations are following a mixture of

Gaussians and then predicts the states as “Upstream Bias”, “Downstream Bias” or “No



Bias” (See Supplementary Figure 28 for a mathematical representation of our Hidden
Markov Model).

Describing the observed directionality index as Y’s [Y1,Y2..Y,], the hidden true
directionality biases as Q’s [Q;,Q-..Qy] and the mixtures as M’s [M,M,..M,]. The

probability P(Y |Q, = i,M, = m) is represented using a mixture of Gaussians for each

state i. The Conditional probability distribution [CPDs] of Y, and M, nodes are,

P(Y, = YtIQt =iM;=m) = N(Yt;lvli,m ’Zi,m)

P(M, =mlQ, =i) = C(i,m), where C encodes the mixture weights for each state i.

We used Baum-Welch algorithm [EM] to compute maximum likelihood estimates
and the parameter estimates of transition and emission (characterized by mean,
covariance and weights). The posterior marginals were then estimated using the Forward-
backward algorithm.

For each chromosome, we allowed 1 to 20 mixtures and chose the mixture with
best goodness of fit using the AIC criterion, AIC = 2k — 2In(L), k is the number of
parameters in the model and L being the maximum likelihood estimate. Matlab was used
to perform the HMM.

As a post-processing step, we estimated the median posterior probability of a
region, defined as a stretch of same state, and believed only in regions having a median
posterior marginal probabilities = 0.99 or a region that is at least 80kb long.

Domains and boundaries are then inferred from the results of the HMM state calls

throughout the genome. A domain is initiated at the beginning of a single downstream



biased HMM state. The domain is continuous throughout any consecutive downstream
biased states. The domain will then end when the last in a series of upstream biased
states are reached, with the domain ending at the end of the last HMM upstream biased
state. We term the regions in between the topological domains as either “topological
boundaries” or “unorganized chromatin.” We defined unorganized chromatin to be these
regions that are > 400kb, and the topological boundaries to be less than 400kb. We
would note that the topological boundaries, though defined as regions less than 400kb,

are mostly quite small, with 76.33% being less than 50kb in size (mESC data).

Transcription Factor and Histone Modification Enrichment Analysis

We collected histone modification ChIP-Seq datasets from a variety of publically
available databases. For mouse, each dataset was mapped using Bowtie®' to the NCBI
Build 37/mm9 reference genome. For humans, the data was mapped using Bowtie to
NCBI Build 36/hg18. Peaks were called using MACS™. We performed post-processing
of the MACS peaks by filtering out peaks with less than a 2-fold enrichment in signal
compared to matched input or less than an absolute difference in RPKM of 1. The peak
or binding sites frequency was then calculated for every 10kb bin in the genome. For
generating the average peak frequency plots, the mid-point of each boundary region was
identified, and peak frequency was calculated in 10kb bins for +/- 500kb from the
boundary mid-point. For block like factors (H3K9me3, H3K27me3, H3K36me3, and
H3K79me2), we did not use MACS peak calling and each 10kb bin score was simply the

log2 ratio of the total ChIP-seq signal over the 10kb window divided by the input signal



of the window. The data were either averaged for the enrichment graphs (Figure 4,
Supplementary Figure 20) or were plotted as heatmaps (Figure 2).

For determining which boundaries are associated with a given factor, we
considered a boundary to be associated with a factor if there were a binding site called by
MACS (for chromatin factors like CTCF) or if there were a locus (for example, the
transcription start site of a housekeeping gene) within +/- 20kb of the boundary. The
20kb window is chosen because this reflects the inherent uncertainty in the exact position
of the domain calls due to 40kb binning. The analysis shown in the pie chart in Figure 4e
is performed as follows: First, boundaries with CTCF were identified. Second,
boundaries with housekeeping genes were identified. If a boundary was not associated
with a housekeeping gene, yet is associated with a non-housekeeping gene according to
entropy scores, that is shown as a “other gene” associated boundary.

For the analysis of the patterns of H3K9me3 and Lamina DamlID signal
surrounding the boundary regions shown in Figure 2, we used k-means clustering to
cluster the data. For Figure 2d, k-means clustering is performed on the hESC and IMR90
data simultaneously. Likewise, the mESC and cortex data were also clustered
simultaneously.

GO Terms Enrichment analysis

GO terms enrichment analysis was performed using the DAVID tool. In figure 4,
we display only non-redundant GO terms with a Benjamini corrected p-value less than
10°.

Dynamic Interactions



Differential interactions between mESCs and cortex were modeled as a Binomial
distribution. For this analysis we combined the data from two pairs of replicates together
(mouse ES cell versus cortex). We performed a binomial test for each possible
interaction in the genome up to a distance of SMbp. The total number of trials (n) is
equal to the sum of the reads in the two mESC replicates plus the sum of the reads in the
two cortex replicates that map between two 20kb bins (I;) at a distance (d) (n = Ijmesc +
Lijcortex). The expected ratio (p) of the mESC to cortex read ratio is equal to the ratio of
the sums of all reads in the two mESC replicates between bins at distance (d) throughout
the genome compared to the sum of the reads total reads between bins at distance d (p =
2 Imesc/n at distance d or p = Z Leorex/n). Therefore, deviations in the ratio of the number
of interactions in mouse ES cells (I;.mesc) to the number of interactions in cortex (Ijjcortex)
will result in a significant p-value. We would note that this method accounts for the
differences in sequencing depth between the two libraries by considering the expected
ratio (p), which is proportional to the total sequencing depth. To model the extent to
which noise or variability could contribute to dynamic interacting regions, we performed
the same analysis but randomly permuted the combination of data. Specifically, under
random permutation 1, we combine the mouse ES replicate 1 with the cortex replicate 1
and compared this to the combination of mouse ES replicate 2 with cortex replicate 2.
For random permutation 2, we combined the mouse ES replicate 1 with the cortex
replicate 2 and compared this to the combination of mouse ES replicate 2 with cortex
replicate 1. Under a null hypothesis that the mouse ES cell and cortex Hi-C data sets are
the same, we would expect a similar number of dynamic interactions when the actual

groupings were considered (mMESC1+mESC2 vs. cortex1+cortex2) as we would under the



random permutation (mESCl+cortex1 vs mESC2+cortex2 or mESC1+cortex2 vs.
mESC2+cortex1). This also allows for an estimate of the number of dynamic
interactions that would be observed to due random chance or noise, allowing us to
calculate the False Discover Rate (FDR) of identifying dynamic interaction regions (the
FDR is equal to the number of observed dynamic interactions in the randomly permutated
data divided by the number of observed interaction in the actual data). For the dynamic
interaction analysis, we only considered data from Hi-C experiments using the HindIII
restriction enzyme to eliminate restriction enzyme effects as a possible confounding

factor.

Housekeeping and Tissue Specific Gene Expression

“Housekeeping” and “Tissue Specific” genes were identified based on gene
expression data from the bioGPS gene atlas database™. Specifically, the normalized
probe intensities are used as a measure of absolute gene expression, with gene x being
expressed at a level x; in a given tissue or cell type i. The probability of expression p; in a

given cell i type is calculated as:

and the entropy score for a given gene x is calculated as:

Hx) = -1*2" p,log2(p)



High entropy scores (> 6.12, corresponding to uniform expression in >70/96 tissues) have
relatively uniform expression patterns and are considered to be “housekeeping” genes,
while low entropy scores (<4.9) have highly variable expression patterns and are
considered tissue specific (uniform expression in < 30/96 tissues). We exclude genes
with entropy score between 4.9 and 6.12 as these are not well categorized as either

“tissue specific” or “housekeeping.”

Boundary Correlation Between and Across Cell Types

To correlate the boundaries both between and across cell types, we calculated the
Spearman correlation coefficient of the directionality index between two cells.
Specifically, if a boundary was called by the HMM in either cell type, we would identify
the center of that boundary and correlate a vector of directionality indexes +/- 10 bins
from the center of the boundary between two experiments of interest. For random
correlation, we randomly selected 20 bins from each of the two cell types and calculated
the spearman correlation between the two vectors. We repeated the randomization
10,000 times to achieve the random distribution of spearman correlation coefficients.
Boundaries were called as “cell type specific” if the boundary regions was identified by
the HMM domain calling in only one cell and lacked a significant correlation in the

directionality index between the two cell types.

Boundary Conservation Across Species



Boundaries were lifted over using the UCSC Liftover tool>

from speciesl to
species2 and the overlap between species1to2:species2 and species2tol:species] were
estimated. This overlap was compared with the random boundaries. The random

boundaries were constrained on the distribution of boundary lengths and distribution of

chromosomal occurrence.
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Supplementary Figure 1. Raw Hi-C Data and Restriction Enzyme Bias. a-d, Bias
plots showing the correlation between restriction enzyme cut site frequency and Hi-C
interaction frequency using a bin size of 250kb at a distance of 1Mb. For a-d, all 250kb
bins were grouped into 20 equal sized groups based on increasing restriction enzyme
frequency. The two horizontal axes correspond to the restriction enzyme group of each
of the two bins, i and j, involved in an interaction I; The vertical axis shows the median
of all interactions I; divided by the global median. Perfectly unbiased data should have
all values roughly equal to 1. a, Comparison of HindIII restriction enzyme frequency
with HindIII Hi-C data. b, Comparison of Ncol restriction enzyme frequency with
HindIII Hi-C data. ¢, Comparison of HindIII restriction enzyme frequency with Ncol Hi-
C data. d, Comparison of Ncol restriction enzyme frequency with Ncol Hi-C data. Note
the correlation between the restriction enzyme cut site frequency and the Hi-C interaction
frequency is only present when considering the restriction enzyme used in the Hi-C
experiment. e-h, Similar to a-d, but using a bin size of 40kb and a distance of 80kb. The
horizontal axis in e-h are the number of cut sites/40kb bin.
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Supplementary Figure 2. Normalized Hi-C data shows no restriction enzyme bias.
Identical to Supplementary Figure 1, yet using the normalized Hi-C data. Note that most
values are roughly equal to 1, regardless of bin size or restriction enzyme, demonstrating
that the restriction enzyme bias has been eliminated with normalization.
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normalized data are shown in blue. The normalized data are shown in red.
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Supplementary Figure 4. Comparison with Previous 5C. a, Heat maps over the
HoxA locus of 5C data from lung fibroblasts as reported previously33 and the IMR90 Hi-
C data generated in this report. Visually, there are two separate clusters of interactions in
the upper left and lower right portions of the heat map. b, Scatter plots showing the
correlations between 5C replicates and Hi-C data. In all cases, the correlation is > 0.73,
demonstrating a high degree of correlation between IMR90 Hi-C data and existing 5C
data a similar cell type.
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Supplementary Figure 5. Comparison with Previous 3C data. 2D heatmap of Hi-C
interactions at the Phcl locus. The Phcl promoter was previously shown to interact with
a nearby enhancer by 3C, indicated by the arrow and red box. Gray boxes indicate the
mESC specific Hi-C interactions.
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Supplementary Figure 6. Hi-C interaction frequency and mean spatial distance.
The raw and normalized Hi-C interaction frequencies were compared with the mean
nuclear separation as measured by 2D-FISH between six loci. The 2D-FISH data are

from ref. 35.
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Supplementary Figure 7. Hi-C interaction heat maps at varying bin sizes. Hi-C
interaction frequencies are displayed as 2D heatmaps using differing bin sizes over a
single locus on chromosome 7. Not the presence of the “triangles” on the heat map at a
bin size or resolution of 100kb or less. A comparison with the data from the original Hi-
C report is also shown for comparison” .
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Supplementary Figure 8. Overlap of Topological Domain Boundaries between Hi-C
replicates. Venn-diagrams comparing the amount of overlap between the topological
domain boundaries called in each pair of Hi-C replicates.
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Supplementary Figure 9. Size distribution and gene content of topological domains,
boundaries, and unorganized chromatin. a-c, Histograms of the sizes of topological
domains (a), topological boundaries (b), and unorganized chromatin (c). d,e, Distribution
of the gene content of topological domains and unorganized chromatin. Shown in gray is
the gene content for randomly chosen regions of the genome with the same size
distribution. Neither topological domains nor unorganized chromatin appear to differ
from what is expected at random in terms of the distribution of their gene content.
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Supplementary Figure 10. CTCF enrichment at topological boundary regions. a,
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Supplementary Figure 11. Average Enrichment Plots of H3K9me3 surrounding the
boundaries. a, Identical to Figure 2d in the main text, but labeled with cluster names 1-8
based on k-means clustering. b, The average enrichment plots of H3K9me3 for clusters
1-8 from panel a. Clusters 1-4 show clear enrichment of H3K9me3, and the transition
from enriched to depleted H3K9me3 regions coincides with the location of the
topological boundaries.
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Supplementary Figure 12. Comparison of Topological Domains with Lamina
Associated Domains (LADs). a, Histogram showing the size distribution of the
topological domains and the LADs. Generally, LADs are smaller in size than topological
domains. b, Genome browser shot showing a region on chromosome 12 with multiple
topological domains, one of which appears to be entirely lamina-associated, with the
remainder are non-lamina associated.
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Supplementary Figure 13. Comparison of A and B compartments with topological
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values used to determine the A and B compartments at the topological boundary regions
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Supplementary Figure 14. Comparison of Topological Domains with A and B
compartments and Replication Time Zones. a, Pearson correlation interaction heat
map over chromosome 10. Shown in the blow up is a 10X zoom on a region entirely
within the “B” compartment with multiple topological domains present in the region. b,
Heat map of the replication time zone microarray data (ref. 39), surrounding the
topological boundary regions.
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Supplementary Figure 15. Comparison of Topological Domains with LOCK
domains. a,b, Heat maps showing the enrichment of LOCK domains surrounding the
topological boundary regions. Shown in (a) are the called LOCK domains™, displayed as
either LOCK in red or non-LOCK in white. Shown in (b) is the raw microarray data. c.
Histograms showing the size distribution of LOCK domains and topological domains.
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Supplementary Figure 16. Correlation of A and B compartments and replication
time zones in mouse ES cells. a, Pearson correlation interaction heat map across
chromosome 15. Below the heat map is the genome browser view of the Eigen vector
used to determine the A or B compartments and the replication timing microarray data 3
b, Pearson correlation coefficients of the Eigen vector values and the average probe
intensity for replication timing data in 1Mb bins over each chromosome.
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Supplementary Figure 17. Domains are largely stable between cell types. a, Genome
browser shot of an invariant boundary between hESC and IMR90 and the DI surrounding
the boundary regions. b, Heat maps showing the directionality index surrounding the
topological boundary regions. The heat maps are divided into three regions. Shared
boundaries, boundaries called in cell type A and boundaries called in cell type B. c,
Density plot of the Spearman correlations between the directionality indexes between Hi-
C replicates at the topological boundary regions. Shown in blue are the shared
boundaries. Shown in red is the boundaries called in ES cells (human or mouse) and
shown in green are boundaries called in differentiated cells (human or mouse). Shown in
grey are randomly generated spearman correlations. The replicates are all highly
correlated at the boundary regions, regardless of whether the boundaries are called as
shared or cell type specific.
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Supplementary Figure 18. Cell type specific domains. a, we determined cell type
specific domains between cell types by calculating the spearman correlation coefficient
between the DI at each boundary called in a cell types. The DI at most boundaries is still
well correlated in different cell types. We call a boundary as cell type specific if the
boundary is called by HMM in only one cell type and the spearman correlation of the
directionality index is not significant when compared to a random distribution of
spearman correlations. A minority of boundaries are actually called as cell types specific.

b, A genome browser shot of a cell type specific domain on chromosome 16. The
domain is called in hESCs and is not called in IMR90.
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Supplementary Figure 19. Enrichment of Differentially Expressed genes at
dynamic interacting regions. The number of genes with a > 4-fold change in gene
expression are that are found in a dynamic interacting region in either mouse ES cell or
cortex are shown. Shown in grey is the number of > 4-fold changed gene expected using
randomly permuted dynamic interacting regions.
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Supplementary Figure 20. Histone modification, chromatin binding protein, and
transcription factor enrichment near boundary regions. Average enrichment plots
for factors surrounding boundary regions called in mESC. For most marks, the signal is
shown as the frequency of peaks or binding sites per 10kb. For “block like” marks, such
as H3K27me3 and H3K79me2, the signal shown is the log2(ChIP/Input) over 10kb
windows.
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Supplementary Figure 21. Heat maps of boundary enrichment of Histone
modification, chromatin binding protein, and transcription factor enrichment near
boundary regions. Raw heat maps of each signal at the boundary region of a subset of
marks from Supplemental Figure 20.
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Supplementary Figure 22. Heat maps of boundary enrichment of Histone
modification, chromatin binding protein, and transcription factor enrichment near
boundary regions. Raw heat maps of each signal at the boundary region of the
remainder of marks from Supplemental Figure 20 not shown in Supplementary Figure 21.
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Supplementary Figure 23. Marks enriched at boundaries in each mouse ES cell
replicate. The enrichement plots for CTCF, H3K4me3, transcription start sites, and
GRO-seq signal were calculated similarly to Supplementary Figure 20 for each of the
three mouse ES cell replicates. Also calculated and plotted is the average enrichment of
HindIIT and Ncol cut sites at the boundary regions.
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Supplementary Figure 24. Random assocation of CTCF and housekeeping genes in
mESCs. a,b, Cell type specific boundaries between hESC and IMR90 that show
associated changes in H3K4me3 near the boundary. ¢, Analogous to Figure 4e, pie chart
showing the expected proportion of boundaries associated with CTCF, housekeeping
genes, or other genes in mouse ES cells based on randomly generated boundaries.
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Supplementary Figure 25. Repeat Content at mouse ES cell boundaries. a, The
frequency of repeats from UCSC Repeat Masker was calculated near the boundary
regions. Only SINE element, shown in Figure 4a, show any enrichment at boundary
regions. b, SINE subclass frequency at the topological boundary regions in mouse ES
cells using UCSC Repeat Masker.
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Supplementary Figure 26. Repeat Content at human boundaries. a, The enrichment
of different classes of repeats at the IMR90 boundaries was calculated using the UCSC
Repeat Masker data. b, Enrichment of SINE element frequency at boundaries in human
ES cells. ¢, Enrichment of SINE element subclasses at the topological boundary regions

in IMRO90.
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Supplementary Figure 27. Expected Intermolecular Ligations. To model the
expected number of interactions between two loci in the genome due to random
intermolecular ligation events, we calculated the expected number of reads per kbp2
between the nuclear and mitochondrial chromosomes. As the nuclear and mitochondrial
genomes are in different organelles, these reads can only occur due to random
intermolecular ligations. We assume that the expected number of intermolecular reads
between any two bins is constant, regardless of whether the two bins are nuclear or
mitochondrial. Therefore, the number of intermolecular reads per bin between the
nuclear and mitochondrial chromosomes should be equal to the number of intermolecular
reads between any two bins both located on the nuclear chromosomes. Also shown is the
number of reads at each distance (in red) for 40kb bins along the same chromosome. The
number of random intermolecular reads is on average < 2% of what is actually observed
for bins on the same chromosome less than 2 Mbp apart.
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Supplementary Figure 28. HMM with mixture of Gaussian output. Each 40kb bin i
along a chromosome having n bins has an observed Directionality Indexes (“Observed”
DI) and a hidden Directionality Biases (“Hidden” DB, shown in the figure as states 1, 2,
or 3 for simplicity). Assuming that the observed DI’s are a mixture of Gaussians, we
determine DB state (1, 2 or 3) at bin i.
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